电动马达的作用就是把电能转换成为机械能,而效率则是指产生的机械能与所用的电能之比。马达的振动、发热、噪声和谐波属于各种形式的损耗,要实现高效率,就应减少这些能耗。那么有哪些设计技巧可供设计人员使用,以帮助他们实现高效率呢?
本文将介绍综合运用磁场定向控制(FOC)算法和脉冲频率调制PFM)严密地控制马达,实现高精度与高效率。
FOC
标量控制(或者常称的电压/频率控制)是一种简单的控制方法,通过改变供电电源(电压)和提供给定子的频率来改变马达的扭矩和转速。这种方法相当简单,甚至用8/16位微处理器也能完成设计。不过,简便的设计也伴随着最大的缺陷——缺乏稳健可靠的控制。如果负载在高转速下保持恒定,这种控制方法倒是足够。但一旦负载发生变化,系统就不能快速响应,从而导致能量损失。
相比而言,FOC能够提供严格的马达控制。这种方法旨在让定子电流和磁场保持正交状态(即成90度角),以实现最大扭矩。由于系统获得的磁场相关信息是恒定的(不论是从编码器获得,还是在无传感器工作状态下的估算),它可以精确地控制定子电流,以实现最大机械扭矩。
一般来说FOC比较复杂,需要32位处理器和硬件加速功能。原因在于这种方法需要几个计算密集型模块,比如克拉克变换、帕克变换等,用于完成三维或二维坐标系间的相互转换,以抽取电流相对磁通的关系信息。
如图1所示,控制马达所需考虑的输入包括目标扭矩指令、供电电流和转子角。根据这些参数完成转换和计算,计算出电力电子的新驱动值。完成一个周期的FOC所需的时间被称为环路时间。不出所料,环路时间越短,系统的响应速度就越快。响应速度快的系统意味着马达能够迅速针对负载做出调整,在更短的时间周期内完成误差补偿,从而实现更加顺畅的马达运行和更高的效率。
评论