博文

低压配电系统分为三种,即TN、TT、IT三种形式(2011-04-06 16:22:00)

摘要:根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。
      TN系统:电源变压器中性点接地,设备外露部分与中性线相连。
       TT系统:电源变压器中性点接地,电气设备外壳采用保护接地。
       IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳电气设备外壳采用保护接地。

       1、TN系统
       电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN—C系统、TN—S系统、TN—C—S系统。下面分别进行介绍。
       1.1、TN—C系统
       其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。
       (1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。TN—C系统一般采用零序电流保护;
       (2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设......

阅读全文(4674) | 评论:0

电缆截面电流大小和电缆温度修正(2009-10-25 08:13:00)

摘要:导体载流量的计算口诀 1. 用途:各种导线的载流量(安全电流)通常可以从手册 中查找。但利用口诀再配合一些简单的心算,便可直接算出,不必查表。导线的载流量与导线的载面有关,也与导线的材料(铝或铜),型号(绝缘线或裸线等),敷设方法(明敷或穿管等)以及环境温度(25度左右或更大)等有关,影响的因素较多,计算也较复杂。  10 下五,1 0 0 上二。  2 5 ,3 5 ,四三界。 7 0 ,95 ,两倍半。  穿管温度,八九折。 裸线加一半。 铜线升级算。 3.说明:口诀是以铝芯绝缘线,明敷在环境温度25 度的条 件为准。若条件不同, 口诀另有说明。 绝缘线包括各种型号的橡皮绝缘线或塑料绝缘线。 口诀 对各种截面的载流量(电流,安)不是直接指出,而是“用截面 乘上一定的倍数”,来表示。 为此,应当先熟悉导线截面,(平方 毫米)的排列 1 1.5 2.5 4 6 10 16 25 35 50 7O 95 l20 150 185...... 生产厂制造铝芯绝缘线的截面积通常从而2.5开始,铜芯 绝缘线则从1 开始;裸铝线从16 开始;裸铜线从10 开始。  ① 这口诀指出:铝芯绝缘线载流量,安,可以按截面数的多少倍来计算。 口诀中阿拉伯数码表示导线截面(平方毫米),汉字表示倍数。把口诀的截面与倍数关系排列起来便如下: ..10 16-25 35-50 70-95 120.... 五倍四倍三倍两倍半二倍 现在再和口诀对照就更清楚了:                       原来“10 下五”是指截 面从10 以下,载流量都是截面数的五倍。                      “100 上二”(读百上二),是指截面100以上,载流量都是截面数的二倍。 &nbs......

阅读全文(5308) | 评论:0

运放的指标(2009-10-19 09:50:00)

摘要:1、开环差模电压增益Avd:
运放在没有外部反馈作用时的差模直流电压增益称为开环差模电压增益,它是决定运放电路运算精度的重要因素,
定义为运放开环是的输出电压与差模输入电压之比,即:Avd=Vod/Vid
也可用分贝表示为:20×lg(Avd)=20×lg(Vod/Vid)
对于一般运放,Avd在(80~120)dB之间,高精度的运放Avd可达(120~140)dB。
2、输入失调电压Vos
常温(27摄氏度)下,当运放输入端口短路时,放大器的输出失调电压折合到输入端的等效差模输入电压值称为输
入失调电压,它主要反映了输入级差分对管的失配程度,一般Vos约为(1~10)mV,高质量运放Vos在1mV以下。
3、输入失调电压温漂dVos/dT
该参数是指Vos在规定工作范围内的温度系数,是衡量运放温度影响的重要指标。一般情况下dVos/dT约为
(10~30)uV/摄氏度,高质量的可做到<0.5uV/C(摄氏度)。
4、输入失调电流Ios
常温下当运放输入端口开路时,为了得到零输出,必须加到运放两个输入端的直流补偿电流,称为输入失调电流Ios,
它表征了差放输入级两管B不对称所造成的影响,记为 Ios=|IB1-IB2|(Vo=0时的两管基极电流)
通常,Ios为(0.5~5)nA,高质量的可低于1nA。
5、输入失调电流的温漂dIos/dT
它是指Ios在规定工作范围内的温度系数,也是衡量运放受温度影响的重要指标,通常约为(1~50)nA/C,高质量
的约为几个pA/C。
6、输入偏置电流IB
他是衡量差分对管输入电流绝对值大小的标志,当常温下(27C),输入信号为零且零输出时,用两个输入端的基极
偏置电流平均值来表示。IB太大,不仅在不同信号内阻的情况下,对静态工作点有较大影响,而且会影响温漂和运算
精度,IB一般在10nA~1uA范围内;IB小,表明输入失调电流小,放大器的输入电阻高。
7、共模抑制比KCMR
它是衡量输入级各参数对称程度的表志。运算放大器在同相端输入信号时,共模抑制比对运算精度有较大影响,通常
KCMR约为(70~100)分贝,高质量的可达160分贝......

阅读全文(2717) | 评论:0

dc/ac过程(2008-12-23 10:19:00)

摘要:http://www.guangdongdz.com/special_column/techarticle/old/5118.html    ......

阅读全文(1784) | 评论:0

电容补尝功率因数是怎么回事(2008-11-22 10:32:00)

摘要:电容补尝功率因数是怎么回事
答:因为在电容上建立电压首先需要有个充电过程,随着充电过程,电容上的电压逐步提高,这样就会先有电流,后建立电压的过程,通常我们叫电流超前电压90度(电容电流回路中无电阻和电感元件时,叫纯电容电路)。电动机、变压器等有线圈的电感电路,因通过电感的电流不能突变的原因,它与电容正好相反,需要先在线圈两端建立电压,后才有电流(电感电流回路中无电阻和电容时,叫纯电感电路),纯电感电路的电流滞后电压90度。由于功率是电压乘以电流,当电压与电流不同时产生时(如:当电容器上的电压最大时,电已充满,电流为0;电感上先有电压时,电感电流也为0),这样,得到的乘积(功率)也为0!这就是无功。那么,电容的电压与电流之间的关系正好与电感的电压与电流的关系相反,就用电容来补偿电感产生的无功,这就是无功补偿的原理。 ......

阅读全文(2300) | 评论:1

开关电源的干扰及其抑制(2008-10-24 16:16:00)

摘要:开关电源作为电子设备的供电装置,具有体积小、重量轻、效率高等优点,在数字电路中得到了广泛的应用.然而由于工作在高频开关状态,属于强干扰源,其本身产生的干扰直接危害着电子设备的正常工作.因此,抑制开关电源本身的电磁噪声,同时提高对电磁干扰的抗扰性抑制开关电源本身的噪声,以保证电子设备能够长期安全可靠地工作, 是开发和设计开关电源的一个重要课题.

一、开关电源干扰的产生

开关电源干扰的产生一般可分为两大类:一是开关电源内部元件形成的干扰;二是由于外界因素影响而使开关电源产生的干扰,这涉及到人为因素和自然因素.

1.开关电源内部干扰
开关电源产生EMI的原理较多,其中由基本整流器产生的电流高次谐波干扰和功率转换电路产生的尖峰电压干扰是主要原因.
⑴基本整流器
基本整流器的整流过程是产生EMI最常见的原因.这是因为工频交流正弦波通过整流后不再是单一频率的电流,而变成一直流分量和一系列频率不同的谐波分量,谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,使前端电流发生畸变,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰.
⑵功率转换电路
功率转换电路是开关稳压电源的核心,它产生的尖峰电压是一种有较大幅度的窄脉冲,其频带较宽且谐波比较丰富.产生这种脉冲干扰的主要原因是:

①开关管
开关管及其散热器与外壳和电源内部的引线间存在分布电容.当开关管流过大的脉冲电流时,大体上形成了矩形波,该波形含有许多高频成份.由于开关电源使用的元件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流.开关管的负载是高频变压器或储能电感,在开关管导通的瞬间,变压器初级出现很大的涌流,造成尖峰噪声.

②高频变压器
开关电源中的变压器,用作隔离和变压.但由于漏感地原因,会产生电磁感应噪声;同时,在高频状况下变压器层间的分布电容会将一次侧高次谐波噪声传递给次级,变压器对外壳的分布电容形成另一条高频通路,而使变......

阅读全文(2294) | 评论:0

开关电源PCB排版基本要点(2008-10-24 16:12:00)

摘要: 1 开关电源PCB排版基本要点
l.1 电容高频滤波特性     图1是电容器基本结构和高频等效模型。     电容的基本公式是    
    式(1)显示,减小电容器极板之间的距离(d)和增加极板的截面积(A)将增加电容器的电容量。

    电容通常存在等效串联电阻(ESR)和等效串联电感(ESL)二个寄生参数。图2是电容器在不同工作频率下的阻抗(Zc)。     一个电容器的谐振频率(fo)可以从它自身电容量(C)和等效串联电感量(LESL)得到,即    
    当一个电容器工作频率在fo以下时,其阻抗随频率的上升而减小,即    
    当电容器工作频率在fo以上时,其阻抗会随频率的上升而增加,即    
    当电容器工作频率接近fo时,电容阻抗就等于它的等效串联电阻(RESR)。

    电解电容器一般都有很大的电容量和很大的等效串联电感。由于它的谐振频率很低,所以只能使用在低频滤波上。钽电容器一般都有较大电容量和较小等效串联电感,因而它的谐振频率会高于电解电容器,并能使用在中高频滤波上。瓷片电容器电容量和等效串联电感一般都很小,因而它的谐振频率远高于电解电容器和钽电容器,所以能使用在高频滤波和旁路电路上。由于小电容量瓷片电容器的谐振频率会比大电容量瓷片电容器的谐振频率要高,因此,在选择旁路电容时不能光选用电容值过高的瓷片电容器。为了改善电容的高频特性,多个不同特性的电容器可以并联起来使用。图3是多个不同特性的电容器并联后阻抗改善的效果。     电源排版基本要点1 旁路瓷片电容器的电容不能太大,而它的寄生串联电感应尽量小,多个电容器并联能改善电容的高频阻抗特性。
 
    图4显示了......

阅读全文(1896) | 评论:0

开关电源原理图分析(2008-10-24 16:05:00)

摘要: 开关电源工作原理是什么? 开关电源就是用通过电路控制开关管进行高速的道通与截止。将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50HZ高很多.所以开关变压器可以做的很小,而且工作时不是很热!!成本很低.如果不将50HZ变为高频那开关电源就没有意
开关电源的工作流程是: 电源→输入滤波器→全桥整流→直流滤波→开关管(振荡逆变)→开关变压器→输出整流与滤波。 交流电源输入经整流滤波成直流 通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上 开关变压器次级感应出高频电压,经整流滤波供给负载 输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的 交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰;
在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高;
开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出;
一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源.
主要用于工业以及一些家用电器上,如电视机,电脑等 开关电源原理图分析 1、正激电路

电路的工作过程:

a> 开关S开通后,变压器绕组N1两端的电压为上正下负,与其耦合的N2绕组两端的电压也是上正下负.因此VD1处于通态,VD2为断态,电感L的电流逐渐增长;

b> S关断后,电感L通过VD2续流,VD1关断.S关断后变压器的激磁电流经N3绕组和VD3流回电源,所以S关断后承受的电压为 .

c> 变压器的磁心复位:开关S开通后,变压器的激磁电流由零开始,随着时间的增加而线性的增长,直到S关断.为防止变压器的激磁电感饱和,必须设法使激磁电流在S关断后到下一次再开通的一段时间内降回零,这一过程称为变压器的磁心复位. 正激电路的理想化波形:

变压器的磁心复位时间为:
Tist=N3*Ton/N1
输出电压:输出滤波电感电流连续的情况下:
Uo/Ui=N2*Ton/N1*T
......

阅读全文(9886) | 评论:70

ADC和DAC应用中被忽略的几个关键参数(2008-07-08 13:32:00)

摘要:在前面一个讨论7135的贴子里,提到了INL、DNL等几个参数,可是似乎知道这几个参数意义的朋友并不多。
   说起来都是教科书害人。几乎所有的教科书、参考书、文献选编都只关心模数器件的分辨率和速度,而忽略了器件的精度。而关系到器件精度的两个非常重要的参数就是INL值和DNL值。小弟觉得非常有必要专门写一篇贴子来普及一下模数器件精度这个重要的概念。

   说精度之前,首先要说分辨率。最近已经有贴子热门讨论了这个问题,结论是分辨率决不等同于精度。比如一块精度0.2%(或常说的准确度0.2级)的四位半万用表,测得A点电压1.0000V,B电压1.0005V,可以分辨出B比A高0.0005V,但A点电压的真实值可能在0.9980~1.0020之间不确定。

   那么,既然数字万用表存在着精度和分辨率两个指标,那么,对于ADC和DAC,除了分辨率以外,也存在精度的指标。
   模数器件的精度指标是用积分非线性度(Interger NonLiner)即INL值来表示。也有的器件手册用 Linearity error 来表示。他表示了ADC器件在所有的数值点上对应的模拟值,和真实值之间误差最大的那一点的误差值。也就是,输出数值偏离线性最大的距离。单位是LSB(即最低位所表示的量)。
   比如12位ADC:TLC2543,INL值为1LSB。那么,如果基准4.095V,测某电压得的转换结果是1000,那么,真实电压值可能分布在0.999~1.001V之间。对于DAC也是类似的。比如DAC7512,INL值为8LSB,那么,如果基准4.095V,给定数字量1000,那么输出电压可能是0.992~1.008V之间。

   下面再说DNL值。理论上说,模数器件相邻量个数据之间,模拟量的差值都是一样的。就相一把疏密均匀的尺子。但实际并不如此。一把分辨率1毫米的尺子,相邻两刻度之间也不可能都是1毫米整。那么,ADC相邻两刻度之间最大的差异就叫差分非线性值(Differencial NonLiner)。DNL值如果大于1,那么这个ADC甚至不能保证是单调......

阅读全文(1909) | 评论:0

如何产生负电压(2008-06-18 16:50:00)

摘要:1、电荷泵提供负压

TTL电平/232电平转换芯片(如,MAX232,MAX3391等)是最典型的电荷泵器件可以输出较低功率的负压.但有些LCD要求-24V的负偏压,则需要另外想办法.可用一片max232为LCD模块提供负偏压.TTL-in接高电平,RS232-out串一个10K的电位器接到LCM的VEE.这样不但可以显示, 而且对比度也可调. MAX232是+5V供电的双路RS-232驱动器,芯片的内部还包含了+5V及±10V的两个电荷泵电压转换器.

    设计高压电荷泵需要较多的开关,用分离元件实现起来就有点困难了,不如用电感来得简单.一般地,1个三极管或MOSFET,1个比较器或通用运放(做PWM振荡),1个电感,1个肖基特二极管和若干阻容元件就可以搞定.如果你的MCU自身带有PWM接口,且软件允许的话,就更简单了.



2、反相器提供负压

反相器的输出接一个电容C1,C1的另一端接二极管D1的正极和二极管D2的负极,D1的负极接地,D2的负极接电容C2,C2的另一端接地.C2的容量要大于C1.例如,C1用0.1μF,C2用 0.47μF,当然最佳数值可由试验确定.反相器的输入端加一个方波,其幅值应该能使反相器正常工作,那么在反相器的输出端就出现一个相位相反的方波.电容C2上就会出现一个负电压,理论上比电源电压低0.7V,然后再稳压到-5V.



3、负压电源转换器产生负压

MAX749是一个专门用来产生负电压的电源转换器. MAX749为倒相式PFM开关稳压,输入电压 +2V至 +6V,输出电压可达-100V以上,可通过内部的D/A转换器进行调节,或者通过一个PWM信号或电位器进行调节.MAX749采用一种电流控制方法,既减小了静态电流消耗,又提高了转换效率.关断方式下,静态电流仅为15mA.MAX749在关断方式下仍保持DAC的设定值,从而简化了软件控制.

使用MAX749产生负压时应注意外围元件的选择,这里特别说明几点:

1)      晶体管:可以用PNP晶体管或P沟道MOSFET.前者经济,使用简单,......

阅读全文(3624) | 评论:0