Cong Wang
25th November,2005
Institute of Post and Telecommunication, Xi'an, PRC China
Network Engineering Dep.
引言
网上流传着一个怪异的求pi程序,虽然只有三行却能求出pi值连小数点前共800位。这个程序如下:
/*某年Obfuscated C Contest佳作选录:*/
#include < stdio.h>
long a=10000, b, c=2800, d, e, f[2801], g;
main(){
for(;b-c;)f[b++]=a/5;
for(;d=0,g=c*2;c-=14,printf("%.4d",e+d/a),e=d%a)
for(b=c;d+=f[b]*a,f[b]=d%--g,d/=g--,--b;d*=b);
}
/* (本程式可算出pi值连小数点前共800位)
(本程式录自sci.math FAQ,原作者未详)*/
咋一看,这程序还挺吓人的。别慌,下面就告诉你它是如何做到的,并且告诉你写怪异C程序的一些技巧。^_^
展开化简
我们知道,在C语言中,for循环和while循环可以互相代替。
for(statement1;statement2;statement3){
statements;
}
上面的for语句可以用下面的while语句来代替:
statement1;
while(statement2){
statements;
statement3;
}
而且要写怪异的C程序,逗号运算符无疑是一个好的助手,它的作用是:
从左到右依次计算各个表达式的值,并且返回最右边表达式的值。
把它嵌入for循环中是写怪异代码的常用技巧之一。所以,上面的程序可以展开为:
#include < stdio.h> /*1*/
/*2*/
long a=10000, b, c=2800, d, e, f[2801], g; /*3*/
main(){ /*4*/
while(b-c!=0){ /*5*/
f[b]=a/5; /*6*/
b++; /*7*/
} /*8*/
d=0; /*9*/
g=c*2; /*10*/
while(g!=0){ /*11*/
b=c; /*12*/
d+=f[b]*a; /*13*/
f[b]=d%--g; /*14*/
d=d/g--; /*15*/
--b; /*16*/
while(b!=0){ /*17*/
d=d*b+f[b]*a; /*18*/
f[b]=d%--g; /*19*/
d=d/g--; /*20*/
--b; /*21*/
} /*22*/
c-=14; /*23*/
printf("%.4d",e+d/a); /*24*/
e=d%a; /*25*/
d=0; /*26*/
g=c*2; /*27*/
} /*28*/
} /*29*/
现在是不是好看一点了?
进一步化简
你应该能注意到a的值始终是10000,所以我们可以把a都换成10000。再就是,仔细观察g,在外层循环中,每次循环用它做除法或取余时,它总是等于2*c-1,而b总是初始化为c。在内层循环中,b每次减少1,g每次减少2。你这时会想到了吧?用2*b-1代替g!代进去试试,没错!另外,我们还能做一点化简,第26行的d=0是多余的,我们把它合并到第13行中去,第13行可改写为: d=f[b]*a; 。所以程序可以改为:
#include < stdio.h>
long b, c=2800, d, e, f[2801];
main(){
while(b-c!=0){
f[b]=2000;
b++;
}
while(c!=0){
b=c;
d=f[b]*10000;
f[b]=d%(b*2-1);
d=d/(b*2-1);
--b;
while(b!=0){
d=d*b+f[b]*10000;
f[b]=d%(b*2-1);
d=d/(b*2-1);
--b;
}
c-=14;
printf("%.4d",e+d/10000);
e=d%10000;
}
}
少了两个变量了!
深入分析
好了,马上进入实质性的分析了。一定的数学知识是非常有必要的。首先,必须知道下面的公式可以用来求pi:
pi/2=1+1!/3!!+2!/5!!+3!/7!!+...+k!/(2*k+1)!!+...
只要项数足够多,pi就有足够的精度。至于为什么,我们留给数学家们来解决。
写过高精度除法程序的人都知道如何用整数数组来进行除法用法,而避免小数。其实很简单,回想一下你是如何徒手做除法的。用除数除以被除数,把得数放入结果中,余数乘以10后继续做下一步除法,直到余数是零或达到了要求的位数。
原程序使用的数学知识就那么多,之所以复杂难懂是因为它把算法非常巧妙地放到循环中去了。我们开始具体来分析程序。首先,我们从数学公式开始下手。我们求的是pi,而公式给出的是pi/2。所以,我们把公式两边同时乘以2得:
pi=2*1+2*1!/3!!+2*2!/5!!+2*3!/7!!+...+2*k!/(2*k+1)!!+...
接着,我们把它改写成另一种形式,并展开:
pi=2*1+2*1!/3!!+2*2!/5!!+2*3!/7!!+...+2*n!/(2*n+1)!!
=2*(n-1)/(2*n-1)*(n-2)/(2*n-3)*(n-3)/(2*n-5)*...*3/7*2/5*1/3
+2*(n-2)/(2*n-3)*(n-3)/(2*n-5)*...*3/7*2/5*1/3
+2*(n-3)/(2*n-5)*...*3/7*2/5*1/3
+2*3/7*2/5*1/3
+2*2/5*1/3
+2*1/3
+2*1
对着公式看看程序,可以看出,b对应公式中的n,2*b-1对应2*n-1。b是从2800开始的,也就是说n=2800。(至于为什么n=2800时,能保证pi的前800位准确不在此讨论范围。)看程序中的相应部分:
d=d*b+f[b]*10000;
f[b]=d%(b*2-1);
d=d/(b*2-1);
d用来存放除法结果的整数部分,它是累加的,所以最后的d将是我们要的整数部分。而f[b]用来存放计算到b为止的余数部分。
到这里你可能还不明白。一是,为什么数组有2801个元素?很简单,因为作者想利用f[1]~f[2800],而C语言的数组下标又是从0开始的,f[0]是用不到的。二是,为什么要把数组元素除了f[2800]都初始化为2000?10000有什么作用?这倒很有意思。因为从printf("%.4d",e+d/10000); 看出d/10000是取d的第4位以前的数字,而e=d%10000; ,e是d的后4位数字。而且,e和d差着一次循环。所以打印的结果恰好就是我们想要的pi的相应的某4位!开始时之所以把数组元素初始化为2000,是因为把pi放大1000倍才能保证整数部分有4位,而那个2就是我们公式中两边乘的2!所以是2000!注意,余数也要相应乘以10000而不是10!f[2800]之所以要为0是因为第一次乘的是n-1也就是2799而不是2800!每计算出4位,c都要相应减去 14,也就保证了一共能够打印出4*2800/14=800位。但是,这竟然不会影响结果的准确度!本人数学功底不高,无法给出确切答案。(要是哪位达人知道,请发email到xiyou.wangcong@gmail.com告诉我哦。)
偶然在网上见到一个根据上面的程序改写的“准确”(这个准确是指没有漏掉f[]数组中的的任何一个元素。)打印2800位的程序,如下:
long b,c=2800,d,e,f[2801],g;
int main(int argc,char* argv[])
{
for(b=0;b f[b] = 2;
e=0;
while(c > 0)
{
d=0;
for(b=c;b>0;b--)
{
d*=b;
d+=f[b]*10;
f[b]=d%(b*2-1);
d/=(b*2-1);
}
c-=1;
printf("%d",(e+d/10)%10);
e=d%10;
}
return 0;
}
不妨试试把上面的程序压缩成3行。
结论
以Knuth图灵演讲中的一句话结束全文:
We have seen that computer programming is an art, because it applies accumulated knowledge to the world, because it requires skill and ingenuity, and especially because it produces objects of beauty. A programmer who subconsciously views himself as an artist will enjoy what he does and will do it better.
与大家共勉!^_^
http://blog.programfan.com/article.asp?id=8018 boxer (boxertony 的 BLOG
评论