linux并不是严格意义上的实时操作系统,为了实际需要,工程师们必须想尽办法来祢补这一不足,于是出现了rtlinux和rtai等并不强调商业性的软件。免费的rtlinux显然庞大而并不兼容大部分的嵌入式平台,最新版本的rtlinux也只能支持I386和PPC而已。Rtai是不错的选择,但要把它移植到你的平台上去,为了适应你的linux版本,你的CPU,你必须的花费许多的工作,比如说最近比较流行的AT91RM9200DK,光修改linux版本补丁就要花费许多的功夫。Rtlinux和rtai为了增强linux操作系统的实时性,主要是通过开辟内核模块与应用程序之间可以共享的内存快来实现的。它们在内核空间控制硬实时任务的运行,并通过一个名为FIFO的共享内存块来与应用程序进行通信。他们是很不错的软件,我想用不了多久他们就会具备更强大的可移植性。但我在本文主要是想详细的介绍一个适合小型嵌入式系统使用的增强linux操作系统实时性的方法。当然,原理也是开辟一个实时应用程序与内核模块之间可以共享的内存。
众所周知,内核空间和用户空间只能通过系统调用来共享数据,如果进程要等待一个中断的发生,它所能做的就是把自己挂在等待队列里,直到中断服务程序来唤醒它。然后,进程才把内核空间的的数据通过特定的系统调用写到用户空间里。大部分程序员为了避免这样造成的不可忍耐的延时,都会把对数据的操作都放在内核空间里运行,也就是扩大中断服务程序的功能。但如果开辟两个空间可以共享的内存块,程序员就不必要这么为难了。我以AT91RM9200DK的平台为例,linux操作系统版本为2.4.19-rmk7,不需要半天时间,就可以实现两个空间的共享内存。
AT91RM9200DK的SDRAM的大小为31Mbyte,正常情况下,System RAM的大小也是31Mbyte,我们要把31Mbyte的高端地址空出2M来作为我们的共享内存块,这个内存块是独立的,不能为linux操作系统的内存管理所用了。首先必须通知内核它的内存只有30Mbyte了,我的方法是在u-boot的环境变量里设置mem=29M。然后在include/asm-arm/目录下建立头文件:new_fifo.h,代码如下:
#ifndef NEW_FIFO
#define NEW_FIFO
#endif
#ifdef NEW_FIFO
#define AT91_NEW_FIFO_BASE 0x21d00000
#define num_base(a) (0x21d00000 (0x1000 * a))
/SDRAM最后1M空间的起始地址,我把它以0x1000Byte的大小划分成256个FIFO/
#define SPI_NUM_FIFO 2
/SPI设备占用了一个FIFO,是第三个FIFO/
#define MAX_NUM_FIFO 256
#define READONLY 0
#define READEN 0x1
#define WRITONLY 0x2
#define WRITEN 0x4
typedef struct new_fifo{
int code,key;
int start,size;
int flags;
char data[4000]; /数据区/
int endflag;
} *at91_fifo;
static char * new_fifo_fun(int num,int flags,int code,int size)
{
at91_fifo fifo_p;
int num_addr;
char * data;
if(num > MAX_NUM_FIFO)
return -1;
num_addr = num_base(num);
/printk("the num_addr is %p \n",num_addr);
fifo_p = (at91_fifo)ioremap(num_addr,(1024 * 4));
/ printk("the fifo_p is %p\n",fifo_p);
fifo_p->code = code;
/ printk("the code addr is %p\n",&(fifo_p->code));
fifo_p->flags = flags;
fifo_p->size =size;
data = &(fifo_p->data[0]);
/printk("the data addr is %p\n",data);
return data;
}
#endif
......
更多内容请点击查看全文:http://www.hzlitai.com.cn/article/ARM9-article/system/1534.html
评论