正文

线性代数_Ax=b vs Ax=02012-02-01 23:12:00

【评论】 【打印】 【字体: 】 本文链接:http://blog.pfan.cn/katwood/53200.html

分享到:

Generally speaking, Ax=b considers more about the rows of A while Ax=0 more about the columns.


Existence:
1. Ax=b is consistent: (there are no all-zero rows) rank of matrix = rank of augmented matrix
2. Ax=0 is consistent: always (x=0)

Uniqueness:
1. Ax=b 
2. Ax=0 has a infinity of solutions: it has at least one free variable

Subspace:
If A is m by n, [a1, ... ,an] are the columns of A
1. Col A
      All the linear combinations of columns of A (i.e. b where Ax=b)
      In fact it is Span={a1, ... ,an}
      It is a subspace of Rm
2. Null A
      The solutions of Ax=0
      It is a subspace of Rn

阅读(1520) | 评论(0)


版权声明:编程爱好者网站为此博客服务提供商,如本文牵涉到版权问题,编程爱好者网站不承担相关责任,如有版权问题请直接与本文作者联系解决。谢谢!

评论

暂无评论
您需要登录后才能评论,请 登录 或者 注册