正文

PKU 1050 动态规划-解决最大子矩阵问题【转】2009-09-17 14:47:00

【评论】 【打印】 【字体: 】 本文链接:http://blog.pfan.cn/shao/47835.html

分享到:

 

 最大子矩阵问题:
问题描述:(具体见http://acm.pku.edu.cn/JudgeOnline/showproblem?problem_id=1050)
   给定一个n*n(0<n<=100)的矩阵,请找到此矩阵的一个子矩阵,并且此子矩阵的各个元素的和最大,输出这个最大的值。
Example:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
其中左上角的子矩阵:
9 2
-4 1
-1 8
此子矩阵的值为9+2+(-4)+1+(-1)+8=15。
我们首先想到的方法就是穷举一个矩阵的所有子矩阵,然而一个n*n的矩阵的子矩阵的个数当n比较大时时一个很大的数字 O(n^2*n^2),显然此方法不可行。
怎么使得问题的复杂度降低呢?对了,相信大家应该知道了,用动态规划。对于此题,怎么使用动态规划呢?

让我们先来看另外的一个问题(最大子段和问题):
    给定一个长度为n的一维数组a,请找出此数组的一个子数组,使得此子数组的和sum=a[i]+a[i+1]+……+a[j]最大,其中i>=0,i<n,j>=i,j<n,例如
   31 -41 59 26 -53 58 97 -93 -23 84
子矩阵59+26-53+58+97=187为所求的最大子数组。
第一种方法-直接穷举法:
   maxsofar=0;
   for i = 0 to n
   {
       for j = i to n
       {
            sum=0;
            for k=i to j
                sum+=a[k]
            if (maxsofar>sum)
               maxsofar=sum;
       }
   }

第二种方法-带记忆的递推法:
   cumarr[0]=a[0]
   for i=1 to n      //首先生成一些部分和
   {
        cumarr[i]=cumarr[i-1]+a[i];      
   }

   maxsofar=0
   for i=0 to n
   {
       for j=i to n     //下面通过已有的和递推
       {
           sum=cumarr[j]-cumarr[i-1]
           if(sum>maxsofar)
               maxsofar=sum
       }
   }
显然第二种方法比第一种方法有所改进,时间复杂度为O(n*n)。

下面我们来分析一下最大子段和的子结构,令b[j]表示从a[0]~a[j]的最大子段和,b[j]的当前值只有两种情况,(1) 最大子段一直连续到a[j] (2) 以a[j]为起点的子段,不知有没有读者注意到还有一种情况,那就是最大字段没有包含a[j],如果没有包含a[j]的话,那么在算b[j]之前的时候我们已经算出来了,注意我们只是算到位置为j的地方,所以最大子断在a[j]后面的情况我们可以暂时不考虑。
由此我们得出b[j]的状态转移方程为:b[j]=max{b[j-1]+a[j],a[j]},
所求的最大子断和为max{b[j],0<=j<n}。进一步我们可以将b[]数组用一个变量代替。
得出的算法如下:
    int maxSubArray(int n,int a[])
    {
        int b=0,sum=-10000000;
        for(int i=0;i<n;i++)
        {
             if(b>0) b+=a[i];
             else b=a[i];
             if(b>sum) sum=b; 
        }
        return sum;
    }
这就是第三种方法-动态规划。


现在回到我们的最初的最大子矩阵的问题,这个问题与上面所提到的最大子断有什么联系呢?
假设最大子矩阵的结果为从第r行到k行、从第i列到j列的子矩阵,如下所示(ari表示a[r][i],假设数组下标从1开始):
| a11 …… a1i ……a1j ……a1n |
| a21 …… a2i ……a2j ……a2n |
| .     .     .    .   .    .    .   |
| .     .     .    .   .    .    .   |
| ar1 …… ari ……arj ……arn |
| .     .     .    .   .    .    .   |
| .     .     .    .   .    .    .   |
| ak1 …… aki ……akj ……akn |
| .     .     .    .   .    .    .   |
| an1 …… ani ……anj ……ann |

那么我们将从第r行到第k行的每一行中相同列的加起来,可以得到一个一维数组如下:
(ar1+……+ak1, ar2+……+ak2, ……,arn+……+akn)
由此我们可以看出最后所求的就是此一维数组的最大子断和问题,到此我们已经将问题转化为上面的已经解决了的问题了。

此题的详细解答如下(Java描述):

import java.util.Scanner;
public class PKU_1050
{
     private int maxSubArray(int n,int a[])
      {
            int b=0,sum=-10000000;
            for(int i=0;i<n;i++)
             {
                  if(b>0) b+=a[i];
                  else b=a[i];
                   if(b>sum) sum=b;
            }
            return sum; 
      }
      private int maxSubMatrix(int n,int[][] array)
       {
            int i,j,k,max=0,sum=-100000000;
            int b[]=new int[101];
            for(i=0;i<n;i++)
            {
                   for(k=0;k<n;k++)//初始化b[]
                  {
                        b[k]=0;
                  }
                  for(j=i;j<n;j++)//把第i行到第j行相加,对每一次相加求出最大值
                  {
                        for(k=0;k<n;k++)
                        {
                               b[k]+=array[j][k];
                        }
                        max=maxSubArray(k,b); 
                        if(max>sum)
                        {
                                 sum=max;
                        }
                  }
            }
            return sum;
      }
      public static void main(String args[])
       {
            PKU_1050 p=new PKU_1050();
            Scanner cin=new Scanner(System.in);
             int n=0;
            int[][] array=new int[101][101];
             while(cin.hasNext())
             {
                        n=cin.nextInt();  
                        for(int i=0;i<n;i++)
                        {
                                   for(int j=0;j<n;j++)
                                   {
                                              array[i][j]=cin.nextInt();
                                   }
                        }
                        System.out.println(p.maxSubMatrix(n,array));
             }
       }
}

 

学习中·······

阅读(1807) | 评论(0)


版权声明:编程爱好者网站为此博客服务提供商,如本文牵涉到版权问题,编程爱好者网站不承担相关责任,如有版权问题请直接与本文作者联系解决。谢谢!

评论

暂无评论
您需要登录后才能评论,请 登录 或者 注册