<先进pid控制及其matlab仿真> %单神经元自适应pid
| ||
%Single Neural Adaptive PID Controller clear all; close all; x=[0,0,0]'; xiteP=0.40; xiteI=0.35; xiteD=0.40; %Initilizing kp,ki and kd wkp_1=0.10; wki_1=0.10; wkd_1=0.10; %wkp_1=rand; %wki_1=rand; %wkd_1=rand; error_1=0; error_2=0; y_1=0;y_2=0;y_3=0; u_1=0;u_2=0;u_3=0; ts=0.001; for k=1:1:1000 time(k)=k*ts; rin(k)=0.5*sign(sin(2*2*pi*k*ts)); yout(k)=0.368*y_1+0.26*y_2+0.1*u_1+0.632*u_2; error(k)=rin(k)-yout(k); %Adjusting Weight Value by hebb learning algorithm M=1; if M==1 %No Supervised Heb learning algorithm wkp(k)=wkp_1+xiteP*u_1*x(1); %P wki(k)=wki_1+xiteI*u_1*x(2); %I wkd(k)=wkd_1+xiteD*u_1*x(3); %D K=0.06; elseif M==2 %Supervised Delta learning algorithm wkp(k)=wkp_1+xiteP*error(k)*u_1; %P wki(k)=wki_1+xiteI*error(k)*u_1; %I wkd(k)=wkd_1+xiteD*error(k)*u_1; %D K=0.12; elseif M==3 %Supervised Heb learning algorithm wkp(k)=wkp_1+xiteP*error(k)*u_1*x(1); %P wki(k)=wki_1+xiteI*error(k)*u_1*x(2); %I wkd(k)=wkd_1+xiteD*error(k)*u_1*x(3); %D K=0.12; elseif M==4 %Improved Heb learning algorithm wkp(k)=wkp_1+xiteP*error(k)*u_1*(2*error(k)-error_1); wki(k)=wki_1+xiteI*error(k)*u_1*(2*error(k)-error_1); wkd(k)=wkd_1+xiteD*error(k)*u_1*(2*error(k)-error_1); K=0.12; end x(1)=error(k)-error_1; %P x(2)=error(k); %I x(3)=error(k)-2*error_1+error_2; %D wadd(k)=abs(wkp(k))+abs(wki(k))+abs(wkd(k)); w11(k)=wkp(k)/wadd(k); w22(k)=wki(k)/wadd(k); w33(k)=wkd(k)/wadd(k); w=[w11(k),w22(k),w33(k)]; u(k)=u_1+K*w*x; %Control law if u(k)>10 u(k)=10; end if u(k)<-10 u(k)=-10; end error_2=error_1; error_1=error(k); u_3=u_2;u_2=u_1;u_1=u(k); y_3=y_2;y_2=y_1;y_1=yout(k); wkp_1=wkp(k); wkd_1=wkd(k); wki_1=wki(k); end figure(1); plot(time,rin,'b',time,yout,'r'); xlabel('time(s)');ylabel('rin,yout'); figure(2); plot(time,error,'r'); xlabel('time(s)');ylabel('error'); figure(3); plot(time,u,'r'); xlabel('time(s)');ylabel('u'); |
评论