%TSP问题(又名:旅行商问题,货郎担问题)遗传算法通用matlab程序
%D是距离矩阵,n为种群个数,建议取为城市个数的1~2倍,
%C为停止代数,遗传到第 C代时程序停止,C的具体取值视问题的规模和耗费的时间而定
%m为适应值归一化淘汰加速指数 ,最好取为1,2,3,4 ,不宜太大
%alpha为淘汰保护指数,可取为0~1之间任意小数,取1时关闭保护功能,最好取为0.8~1.0
%R为最短路径,Rlength为路径长度
function [R,Rlength]=geneticTSP(D,n,C,m,alpha)
[N,NN]=size(D);
farm=zeros(n,N);%用于存储种群
for i=1:n
farm(i,:)=randperm(N);%随机生成初始种群
end
R=farm(1,:);%存储最优种群
len=zeros(n,1);%存储路径长度
fitness=zeros(n,1);%存储归一化适应值
counter=0;
while counter<c
for i=1:n
len(i,1)=myLength(D,farm(i,:));%计算路径长度
end
maxlen=max(len);
minlen=min(len);
fitness=fit(len,m,maxlen,minlen);%计算归一化适应值
rr=find(len==minlen);
R=farm(rr(1,1),:);%更新最短路径
FARM=farm;%优胜劣汰,nn记录了复制的个数
nn=0;
for i=1:n
if fitness(i,1)>=alpha*rand
nn=nn+1;
FARM(nn,:)=farm(i,:);
end
end
FARM=FARM(1:nn,:);
[aa,bb]=size(FARM);%交叉和变异
while aa<n
if nn<=2
nnper=randperm(2);
else
nnper=randperm(nn);
end
A=FARM(nnper(1),:);
B=FARM(nnper(2),:);
[A,B]=intercross(A,B);
FARM=[FARM;A;B];
[aa,bb]=size(FARM);
end
if aa>n
FARM=FARM(1:n,:);%保持种群规模为n
end
farm=FARM;
clear FARM
counter=counter+1
end
Rlength=myLength(D,R);
function [a,b]=intercross(a,b)
L=length(a);
if L<=10%确定交叉宽度
W=1;
elseif ((L/10)-floor(L/10))>=rand&&L>10
W=ceil(L/10);
else
W=floor(L/10);
end
p=unidrnd(L-W+1);%随机选择交叉范围,从p到p+W
for i=1:W%交叉
x=find(a==b(1,p+i-1));
y=find(b==a(1,p+i-1));
[a(1,p+i-1),b(1,p+i-1)]=exchange(a(1,p+i-1),b(1,p+i-1));
[a(1,x),b(1,y)]=exchange(a(1,x),b(1,y));
end
function [x,y]=exchange(x,y)
temp=x;
x=y;
y=temp;
% 计算路径的子程序
function len=myLength(D,p)
[N,NN]=size(D);
len=D(p(1,N),p(1,1));
for i=1:(N-1)
len=len+D(p(1,i),p(1,i+1));
end
%计算归一化适应值子程序
function fitness=fit(len,m,maxlen,minlen)
fitness=len;
for i=1:length(len)
fitness(i,1)=(1-((len(i,1)-minlen)/(maxlen-minlen+0.000001))).^m;
end
|
评论