正文

[转]模拟退火算法求解TSP问题2007-07-07 21:51:00

【评论】 【打印】 【字体: 】 本文链接:http://blog.pfan.cn/rickone/27365.html

分享到:

模拟退火算法求解TSP问题

作者:ymhui

下载源代码


一、问题描述
  旅行商问题,即TSP问题(Travelling Salesman Problem)是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路经的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。


图1 TSP问题的示意图


二、遍历算法
  一个最容易想到的方法是利用排列组合的方法把所有的路径都计算出来,并逐一比较,选出最小的路径。虽然该方法在理论上是可行的,但路径的个数与城市的个数成指数增长,当城市个数较大时,该方法的求解时间是难以忍受的,甚至是不可能完成的。以每秒1亿次的计算速度来估算,如果TSP问题包含20个城市时,求解时间长达350年;如果要处理30个城市,则求解时间更长达1+10e16年。如此长的时间,在实际中完成是难以想象的。


三、模拟退火算法
  模拟退火算法是解决TSP问题的有效方法之一,其最初的思想由Metropolis在1953年提出,Kirkpatrick在1983年成功地将其应用在组合最优化问题中。
  模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。

  求解TSP的模拟退火算法模型可描述如下:
  解空间:解空间S是遍访每个城市恰好一次的所有路经,解可以表示为{w1,w2 ,……, wn},w1, ……, wn是1,2,……,n的一个排列,表明w1城市出发,依次经过w2, ……, wn城市,再返回w1城市。初始解可选为(1,……, n) ;   
  目标函数:目标函数为访问所有城市的路径总长度;   
  我们要求的最优路径为目标函数为最小值时对应的路径。   
  新路径的产生:随机产生1和n之间的两相异数k和m,不妨假设k<m,则将原路径
  (w1,w2,…,wk,wk+1,…,wm,wm+1,…,wn)
  变为新路径:
  (w1,w2,…,wm,wk+1,…,wk,wm+1,…,wn)上述变换方法就是将k和m对应的两个城市在路径序列中交换位置,称为2-opt映射。 根据上述描述,模拟退火算法求解TSP问题的流程框图如下


图2 模拟退火算法的流程框图


四、主要代码
  对应于流程框图,实现流程的主体函数是SACompution(),代码如下:

UINT SACompution(LPVOID pParam)
{
	while(1)
	{
		double deltatotaldis = 0.0;
		while(1)
		{
			SYRouter SelRouter( ResultRouter.m_CityRouter, 
			                    NowTemperature, 
			                    NowExternalIterNumber,
			                    NowInnerIterNumber );	
			//从某路径的邻域中随机选择一个新的路径,邻域映射为2-opt
			deltatotaldis = SelRouter.m_fTotalDistance-ResultRouter.m_fTotalDistance;
			//计算新路径与当前路径的路程长度差值
			if( deltatotaldis <= 0.0 )
				ResultRouter = SelRouter;	//如果新路径的路程短,则用它替换当前路径
			else
			{
				double chgprobability = exp( -(deltatotaldis/NowTemperature) );
				int randomnum = rand();
				double random = ((double)(randomnum%10000))/10000.0;
				if(chgprobability > random )
					ResultRouter = SelRouter;
				//如果新路径长于当前路径,但exp(-Δf/t) > random(0,1),则仍然替换当前路径
			}
			if( JudgeOverInnerLoop(0) )		
				break;	 //判断内循环是否结束,结束则跳出当前温度的内循环
			else
				NowInnerIterNumber++;	//判断内循环是否结束,不结束则继续内循环
		}
		if( JudgeOverExternalLoop(0) )
			break;	//判断外循环是否结束,结束则结束模拟退火计算
		else
		{
			NowTemperature = CountDownTemperature( NowTemperature, 0 );
			NowExternalIterNumber++;
			NowInnerIterNumber = 0;
			//判断外循环是否结束,不结束则计算出下降后的温度,并继续循环
		}
	}
}      


五、算例测试
  程序对48个城市的TSP问题(城市坐标文件对应于48.txt,已放在发布的源码中)进行计算,求解得到的最优路径图如下。


图3 模拟退火算法获得的最优路径图

  48个城市的计算结果,大的红*表示路径开始城市,途经城市依次用蓝色方块和红色*标示。


六、调试环境
  Windows XP Professional
  Visual C++ 6.0
  STLport 4.6.2

 

====================================

比较简明易懂的文章,补充一点,关于温度的下降方法一般可以是:T(k+1)=a*T(k),a取[0,1]为降温系数。另外关于算法的性能,是依概率1收敛到全局最优解,初始温度T0越大,降温过程越慢(a越接近1),则越有可能收敛到最优解。PS,简称SAA。

阅读(15542) | 评论(9)


版权声明:编程爱好者网站为此博客服务提供商,如本文牵涉到版权问题,编程爱好者网站不承担相关责任,如有版权问题请直接与本文作者联系解决。谢谢!

评论

loading...
您需要登录后才能评论,请 登录 或者 注册