正文

证明E的内部是开集2006-12-01 21:51:00

【评论】 【打印】 【字体: 】 本文链接:http://blog.pfan.cn/rickone/21159.html

分享到:

在书上看到的一个定理,书上留给读者证,我想了好久才想出来。

不知道下面这些CODE能不能作用,需要一个IE插件MathPlay观看。

定义:
0,邻域:在定义了正实函数p(a,b)满足距离定义之后,定义U(x,d)={y|p(x,y)<d},称为x的d邻域
1,内点:如果存在x的邻域U(x,d)是E的子集,那x就是E的内点
2,点集的内部:假设记为$E^o$,定义为,$E^o$={x|x是E的内点}
3,开集:如果集合E,满足$E=E^o$,那么E就是开集。

试证:$E^o$是开集。
证明:由定义3,即证$(E^o)^o=E^o$
由定义1、2显然有$(E^o)^o\subseteq E^o$,于是只要证$E^o\subseteq (E^o)^o$

$\forall x \in E^o$     (1)
假设$x \notin (E^o)^o$  (2)

以下证出矛盾:

由(1)即
$\exists U0(x,d_0) \subset E$
由(2)即
$\forall U1(x,d) \exists x_0 \in U1(x,d) 且x_0 \notin E^o$
又即
$\forall U2(x_0,d) \exists x_1 \in U2(x_0,d)且x_1 \notin E$ (3)

于是矛盾慢慢出现了。


$U1(x,d)=U(x,d_0/2)$
$\therefore p(x,x_0)<d_0/2$

$U2(x_0,d)=U(x_0,d_0/4)$
$\therefore p(x_1,x_0)<d_0/4$
$\therefore p(x,x_1)<=p(x,x_0)+p(x_0,x_1)=3/4d_0<d_0$
$\therefore x_1 \in U0(x,d_0) \subset E$
$\therefore x_1 \in E$这与(3)矛盾,(3)由(1)(2)推出,故假设不成立。
$\therefore x \in (E^o)^o$
$\therefore E^o \subseteq (E^o)^o$
$\therefore (E^o)^o=E^o$

阅读(7024) | 评论(6)


版权声明:编程爱好者网站为此博客服务提供商,如本文牵涉到版权问题,编程爱好者网站不承担相关责任,如有版权问题请直接与本文作者联系解决。谢谢!

评论

loading...
您需要登录后才能评论,请 登录 或者 注册