正文

求和最大的子矩阵2007-09-06 10:40:00

【评论】 【打印】 【字体: 】 本文链接:http://blog.pfan.cn/lingdlz/29159.html

分享到:

Maximal Sub-rectangle
Time Limit: 1000ms, Special Time Limit:2500ms, Memory Limit:32768KB
Problem description
Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. A sub-rectangle is any contiguous sub-array of size 1 × 1 or greater located within the whole array. As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower-left-hand corner:
9 2
-4 1
-1 8

and has the sum of 15.

Input
The input consists of an array of N × N integers. The input begins with a single positive integer N on a line by itself indicating the size of the square two dimensional array. This is followed by N2 integers separated by white-space (newlines and spaces). These N2 integers make up the array in row-major order (i.e., all numbers on the first row, left-to-right, then all numbers on the second row, left-to-right, etc.). N may be as large as 100. The numbers in the array will be in the range [-127, 127].

Output
The output is the sum of the maximal sub-rectangle.

Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15

/// 初学者,练习用

#include <iostream>
using namespace std;

int main(){
    int a[102][102]={0},n,i,j,t,k,sum;
    cin>>n;
    for(i=1; i<=n; i++)
        for(j=1; j<=n; j++){
            cin>>t;
            a[i][j]=a[i][j-1]+t;
        }
    for(sum=0,i=1; i<=n; i++)
        for(j=1; j<=n; j++)
            for(t=0,k=j; k<=n; k++){
                t += a[k][i];
                if(t > sum)
                    sum = t;
            }
    cout<<sum<<endl;
    return 0;
}

阅读(4521) | 评论(1)


版权声明:编程爱好者网站为此博客服务提供商,如本文牵涉到版权问题,编程爱好者网站不承担相关责任,如有版权问题请直接与本文作者联系解决。谢谢!

评论

loading...
您需要登录后才能评论,请 登录 或者 注册