Problem description
In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-numbers. For any positive integer n, define d(n) to be n plus the sum of the digits of n. (The d stands for digitadition, a term coined by Kaprekar.) For example, d(75) = 75 + 7 + 5 = 87. Given any positive integer n as a starting point, you can construct the infinite increasing sequence of integers n, d(n), d(d(n)), d(d(d(n))), .... For example, if you start with 33, the next number is 33 + 3 + 3 = 39, the next is 39 + 3 + 9 = 51, the next is 51 + 5 + 1 = 57, and so you generate the sequence 33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ... The number n is called a generator of d(n). In the sequence above, 33 is a generator of 39, 39 is a generator of 51, 51 is a generator of 57, and so on. Some numbers have more than one generator: for example, 101 has two generators, 91 and 100. A number with no generators is a self-number. There are thirteen self-numbers less than 100: 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, and 97.
Input
No input for this problem.
Output
Write a program to output all positive self-numbers less than 10000 in increasing order, one per line.
Sample Input
no input
Sample Output
1
3
5
7
9
20
31
42
53
64
|
| <-- a lot more numbers
|
9903
9914
9925
9927
9938
9949
9960
9971
9982
9993
#include <stdio.h>
int main()
{int test,a,b,c,d,m;
printf("1\n3\n5\n7\n9\n");
for(m = 20; m < 10000; m ++)
{ if( m > 10 && m <= 117)
{ for(a = 1; a < 10; a ++)
for(b = 0; b < 10; b ++)
{ test = a * 10 + b + a + b;
if( test == m )
{ test = -1;
goto next;
}
}
}
if( m >= 100 && m <= 1026 )
{ for(a = 1; a < 10; a ++)
for(b = 0; b < 10; b ++)
for(c = 0; c < 10; c ++)
{ test = a * 100 + b * 10 + c + a + b + c ;
if( test == m )
{ test = -1;
goto next;
}
}
}
if( m >= 1000 )
{ for(a = 1; a < 10; a ++)
for(b = 0; b < 10; b ++)
for(c = 0; c < 10; c ++)
for(d = 0; d < 10; d ++)
{ test = a * 1000 + b * 100 + c * 10 + d + a + b + c + d;
if( test == m )
{ test = -1;
goto next;
}
}
}
next: if( test != -1 )
printf("%d\n",m);
}
return 0;
}
评论