引言
说到分治算法,最容易想到的例子是在数组中查找元素,常用的算法是遍历整个数组进行查找,算法时间复杂度为O(n);但是对于有序数组,使用二分查找法,可以使时间复杂度减少到O(logn)。
普通查找法:
int IsElement(int a[], int len, int x) //判断数据x是否为数组a的元素,如果是返回该元素的下标,否则返回-1
{
int i;
for (i=0; i<len; i++)
{
if (a[i] == x)
return i;
}
return -1;
}
二分查找法:
int IsElement(int a[], int len, int x)
{
int left = 0;
int right = len - 1;
int mid;
while (left <= right)
{
mid = (left + right) / 2;//寻找中点,以便将数组分成两半
if (a[mid] == x)//刚好找到
return mid;
else if (a[mid] > x)//比中点元素小,右边界左移
right = mid - 1;
else //否则左边界右移
left = mid + 1;
}
return -1;
}
也可以写成递归的形式:
int IsElement(int a[], int len, int x)//驱动程序
{
return Binary(a, 0, len-1, x);
}
int Binary(int a[], int left, int right, int x)//二分递归查找
{
int mid = (left+right)/2;
if (left > right)//没找到
return -1;
if (a[mid] == x) //刚好找到
return mid;
else if (a[mid] > x) //比中点元素小,递归查找左侧数组
return Binary(a, left, mid-1, x);
else //比中点元素大,递归查找右侧数组
return Binary(a, mid+1, right, x);
}
在二分查找法中,我们不断的减少查找区域的范围,把大问题分解成结构相同的小问题,直到问题得解。与二分查找法类似的算法很多,我们将它们归类称为分治法。
设计原理
1.分治法的基本思想
任何一个可以用计算机求解的问题所需的计算时间都与其规模N有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算;n=2时,只要作一次比较即可排好序;n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。
分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。如果原问题可分割成k个子问题,1<k≤n ,且这些子问题都可解,并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
通常,这种分析方法的基本点在于“分解”,因此这种方法也被称为“划分(Divide)和解决(Con—quer)”方法。也正因为如此,它和语言工具中的递归结下了不解之缘。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
2.分治法的适用条件
分治法所能解决的问题一般具有以下几个特征:
(1)该问题的规模缩小到一定的程度就可以容易地解决;
(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;
(3)利用该问题分解出的子问题的解可以合并为该问题的解;
(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。第四条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
3.分治法的基本步骤
分治法在每一层递归上都有三个步骤:
分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;
合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:
DividAndConquer(p(n))//分治法设计原理
{
if (n <= n0)
return Adhoc(p(n));
else
{
//将P分解为较小的子问题P1、P2、…、Pk
Divide p int o smaller subinstances P1, P2, ..., Pk;
for (i=1; i<=k; i++)
yi = DividAndConquer(pi);//递归解决Pi
return Merge(y1, y2, ..., yk);//合并子问题
}
}
算法Merge(y1, y2, ..., yk)是该分治法中的合并子算法,用于将P的子问题P1、P2、…、Pk的相应的解y1、y2、…、yk合并为P的解。
根据分治法的分割原则,原问题应该分为多少个子问题才较适宜?各个子问题的规模应该怎样才为适当?这些问题很难予以肯定的回答。但人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。换句话说,将一个问题分成大小相等的k个子问题的处理方法是行之有效的。许多问题可以取k=2。这种使子问题规模大致相等的做法是出自一种平衡子问题的思想,它几乎总是比子问题规模不等的做法要好。
评论