正文

我所理解的插入排序算法2006-06-20 23:21:00

【评论】 【打印】 【字体: 】 本文链接:http://blog.pfan.cn/goal00001111/16076.html

分享到:

插入排序是一种简单的排序方法,因为的实现比较简单,所以在数据量较少时应用很广泛。插入排序根据其插入的不同方式,可以分为直接插入排序,折半插入排序,2-路插入排序,表插入排序和希尔排序。在这里我将一一写出各种插入排序的算法代码。
直接插入排序
template <class T>
void InsertSort(T a[], int len)
{
      int i, j;
      T temp;
      for (i=1; i<len; i++)
      {
            temp = a[i];
            for (j=i-1; j>=0 && a[j]>temp; j--)//
元素后移
                  a[j+1] = a[j];
            a[j+1] = temp;  //
插入
      }
}
      
有些算法把a[0]设置为临时数据存放处(即原数组中a[0]未存储元素),这样就可以少进行一些判断,在数据量较大时可以节省一些时间,算法如下:
template <class T>
void InsertSort(T a[], int len)
{
      int i, j;
      for (i=1; i<len; i++)
      {
            a[0] = a[i];
            for (j=i-1; a[j]>temp; j--)
                  a[j+1] = a[j];
            a[j+1] = a[0];
      }
}


折半插入排序法
      
由于插入排序的基本操作是在一个有序表中进行查找和插入,则这个查找操作可以利用折半查找来实现。但是折半插入排序仅减少了元素间的比较次数,而元素的移动次数不变,因此折半插入排序法的时间复杂度仍为O(n^2)。算法如下:
template <class T>
void HalfInsertSort(T a[], int len)
{
      int i, j;
      int low, high, mid;
      T temp;
      for (i=1; i<len; i++)
      {
            temp = a[i];
            low = 0;
            high = i - 1;
            while (low <= high) //
a[low。。。high]中折半查找有序插入的位置
            {
                  mid = (low + high) / 2;
                  if (a[mid] > temp)
                        high = mid - 1;
                  else
                        low = mid + 1;
            } //while
            
            for (j=i-1; j>high; j--)//
元素后移
                  a[j+1] = a[j];
            a[high+1] = temp; //
插入
      }//for
}

希尔排序法
      
希尔排序法又称缩小增量排序法,它也是插入排序类的方法,但在时间效率上较前面几种插入排序算法有较大的改进。
      
希尔排序法通过比较相距一定间隔的元素来工作,各趟比较所用的距离随着算法的进行而减小,直到比较相邻元素的最后一趟排序为止。算法如下:
template <class T>

void ShellSort(T a[], int len)//Shell增量序列ht= N/2hk =  hk+1/2

{

      for (int increase=len/2; increase>0; increase/=2)

      {

            for (int i=increase; i<len; i++)

            {

                  T temp = a[i];

                  int j = i;

                  for (; j>=increase; j-=increase)//元素后移

                  {

                        if (temp < a[j-increase])

                              a[j] = a[j-increase];

                        else

                              break;

                  }

                  a[j] = temp; //插入

            }//for

      }//for

}

注:缺2-路插入排序和表插入排序,有意者请补上!谢谢!

 

补充:我上面的希尔排序排序程序中使用的增量序列(increment)是Shell建议的序列ht= N/2hk =  hk+1/2。这个序列并非最好的序列,使用希尔增量时希尔排序的最坏情形运行时间为ON^2)。Hibbard提出一个稍微不同的增量序列,它在实践(并且理论上)给出更好的结果。他的增量形如1372^k – 1。虽然这些增量几乎是相同的,但关键的区别在于相邻的增量没有公共因子。使用Hibbard增量时希尔排序的最坏情形运行时间为ON^3/2))。Sedgewick提出了几种增量序列,其最坏情形运行时间达到ON^4/3)),经验研究指出,在实践中这些序列的运行要比Hibbard的好得多,其中最好的序列是{151941109…},该序列中的项或者是9*4^i 9*2^ i + 1 或者是4^i 3*2^ i + 1。通过将这些值按顺序放到一个数组中可以最容易地实现该算法。(摘自《数据结构与算法分析---c语言描述》,Mark Allen Weiss著)
补充一个Hibbard增量的希尔排序法:

template <class T>

void ShellSort(T a[], int len)//Hibbard增量序列137,…,2^k - 1

{

     int k = 0;

     for (int n=len; n>3; n>>=1)

            ++k;    

     int increase = (1 << k) - 1;//求出最大的增量值2^k - 1

 

      for (; increase>0; increase/=2)

      {

            for (int i=increase; i<len; i++)

            {

                  T temp = a[i];

                  int j = i;

                  for (; j>=increase; j-=increase)//元素后移

                  {

                        if (temp < a[j-increase])

                              a[j] = a[j-increase];

                        else

                              break;

                  }

                  a[j] = temp; //插入

            }//for

      }//for

}

 

阅读(3762) | 评论(0)


版权声明:编程爱好者网站为此博客服务提供商,如本文牵涉到版权问题,编程爱好者网站不承担相关责任,如有版权问题请直接与本文作者联系解决。谢谢!

评论

暂无评论
您需要登录后才能评论,请 登录 或者 注册