博文
笛卡尔网格生成方法概述(2010-03-15 17:47:00)
摘要:......(省略了)
§1.2 计算流体动力学中网格生成技术的发展
计算流体动力学作为计算机科学、流体力学、偏微分方程数学理论、计算几何、数值分析等学科的交叉融合,它的发展除依赖于这些学科的发展外,更直接表现于对网格生成技术、数值计算方法发展的依赖。
在计算流体动力学中,按照一定规律分布于流场中的离散点的集合叫网格(Grid),分布这些网格节点的过程叫网格生成(Grid Generation)。网格生成对CFD至关重要,直接关系到CFD计算问题的成败。1974年Thompson等提出采用求解椭圆型方程方法生成贴体网格,在网格生成技术的发展中起到了开创作用。随后Steger等又提出采用求解双曲型方程方法生成贴体网格。但直到二十世纪八十年代中期,相比于计算格式和方法的飞跃发展,网格生成技术未能与之保持同步发展。因而从二十世纪八十年代开始,各国计算流体和工业界都十分重视网格生成技术的研究。二十世纪九十年代以来迅速发展的非结构网格和自适应笛卡尔网格等方法,使复杂外形的网格生成技术呈现出了更加繁荣发展的局面。现在网格生成技术已经发展成为CFD的一个重要分支,它也是计算流体动力学近二十年来一个取得较大进展的领域。也正是网格生成技术的迅速发展,才实现了流场解的高质量,使工业界能够将CFD的研究成果――求解Euler/NS方程方法应用于型号设计中。
随着CFD在实际工程设计中的深入应用,所面临的几何外形和流场变得越来越复杂,网格生成作为整个计算分析过程中的首要部分,也变得越来越困难,它所需的人力时间已达到一个计算任务全部人力时间的60%左右。在网格生成这一“瓶颈”没有消除之前,快速地对新外形进行流体力学分析,和对新模型的实验结果进行比较分析还无法实现。尽管现在已有一些比较先进的网格生成软件,如ICEM、Gridgen、Gambit等等,但是对一个复杂的新外形要生成一套比较合适的网格,其需要的时间还是比较长,而对于设计新外形的工程人员来说,一两天是他们可以接受的对新外形进行一次分析的最大周期。CFD已经成功地缩短了新外形设计中所需要的风洞实验时间,但在CFD对任意外形成为一种适时的分析工具以前,新外形设计中所需要的风洞实验时间依然非常巨大。要将CFD从专业的研究团体中脱离出来,并且能让工程设计人员应用到实际的设计中去,就必须首先解决网格生成的自动化、......
